
 

Kodak
dp2

dp2 Order Importer
Listener Agent

for the

ROES Server

1. Overview	 1

Adding A dp2 Order Importer Listener Agent	 1

2. Getting Set Up	 1

2.1. Connecting to the dp2 Database	 2

2.2. The Other Settings	 3

Preserve the DP2 Order ID	 3

2.3. dp2 Macros	 3

App.ShareDirectory	 4

Replace $@Func.SubjectFieldForNode with NOTIFY_LOCAL_LISTENERS	 4

2.4. Path conversion Functions	 5

3. Related Topics	 7

3.1. Getting to know the NOTIFY_LOCAL_LISTENERS report macro	 7

3.2. Implementing a Custom Script Listener to handle GetSubjectField	 8

3.3. Importing Subject Data in ROES Server	 9

�i

ROES dp2 Order Importer Listener Agent

1. Overview
The basic function of the dp2 Order Importer Listener Agent is to import an order that exists in
dp2 into the ROES Server.

A Listener Agent you say?

Yes, the dp2 Order Importer is a new type of listener. Up until now the only listeners that
existed in the ROES Server were Custom Event Listeners and all other Agents were production
agents that draw their work from a Queue. A Listener Agent is a listener in that it listens for a
particular event and it’s an Agent in that upon hearing that event, it goes and does some work.

In the case of the dp2 Order Importer Listener Agent, it is listening for an “ImportDP2Order”
event and when it receives one, it will it will attempt to create a .ro file representing the
identified order, currently in dp2, and will then place the created order file in the incoming order
directory.

In creating the .ro file the dp2 Order Importer Listener Agent will create an order.xml file by
going through all the dp2 jobs belonging to the order and parsing them and creating their
equivalent as an item in the order xml.

Adding A dp2 Order Importer Listener Agent

To add a dp2 Order Importer Listener Agent go to the Listeners tab and click on the Plus
button in the lower left corner of the window below the list of listeners. Then select the listener
you want to add, in this case the dp2 Order Importer Agent

2. Getting Set Up
When you first create your dp2 Order Importer Listener Agent it will be assigned a unique name
beginning with Undefined. You can set this name to anything you like.

Unlike the Agents in the Production tab, this Listener Agent is triggered by the broadcasting of
an event. Since the event that it is listening for, “ImportDP2Order”, is fixed, there is no field in
the interface for modifying the event listened for.

Page �1 rev: 3.1.0fc53

ROES dp2 Order Importer Listener Agent

2.1. Connecting to the dp2 Database
The dp2 Order Importer Listener Agent needs to connect to the dp2 Database in order to
perform its operations. To do that we need to define a Java Database Connectivity (JDBC) url
to the dp2 database. A JDBC url defines both a driver to use and the network connection path
to connect to a database. In the case of dp2 almost universally Microsoft SQL Server (or some
variant of MSSQL Server) is what is used for the database server. The ROES Server has a
driver to connect to MSSQLS Server built in called jTDS. So your url would look something like
this:

jdbc:jtds:sqlserver://<your MSSQL Server address here>/DP2

The Username and Password fields should be set to the username and password you have
setup for accessing the DP2 database (by default dp2 sets the username is set to “sa” and the
password to blank but your administer may well have set it to something different).

Once you have populated the database fields you can click on the “Test Connection” button to
see if the setting are connecting properly and make adjustments as necessary.

Page �2 rev: 3.1.0fc53

ROES dp2 Order Importer Listener Agent

When you’re done it might look something like:

2.2. The Other Settings

Preserve the DP2 Order ID

If you select the “Preserve the DP2 Order ID” option then when the order file (.ro) is created, an
additional file will be added that will cause the ROES Server to assign the same order ID that
the order has assigned to it in dp2.

2.3. dp2 Macros
In creating the order .ro file, the dp2 Order Importer Listener Agent will have to go through and
parse all the jobs belonging to the order being imported. In those jobs may be a number of
various dp2 macros. Generally the dp2 Order Importer Listener Agent will evaluate those
macros and place the value called for in it’s own order data.

Page �3 rev: 3.1.0fc53

ROES dp2 Order Importer Listener Agent

App.ShareDirectory

The jobs of the order might make use of the $@App.ShareDirectory directory so dp2 Order
Importer Listener Agent need to be told where dp2’s App.ShareDirectory is so it can resolve
those dp2 macros.

Replace $@Func.SubjectFieldForNode with
NOTIFY_LOCAL_LISTENERS

If the order uses subject data and you want to preserve the behavior where subject data is
dynamically looked up at rendering time then this option allows you to do that. If you don’t need
to preserve that behavior then you can skip this option section.

If you are not familiar with the NOTIFY_LOCAL_LISTENERS macro then jump ahead and read
the section titled “Getting to know the NOTIFY_LOCAL_LISTENERS report macro” and then
come back and read the rest of this section.

By default the dp2 Order Importer Listener Agent will evaluate the
$@Func.SubjectFieldForNode macros with the value that they call for. This will statically set the
value in the generated order data for the order. If you select the Replace
$@Func.SubjectFieldForNode with NOTIFY_LOCAL_LISTENERS option, what it will do
instead, is mark that text node as needing to be evaluated at rendering time (by using a
“textneedsevaluating” attribute) and setting the text to the macro string
“[NOTIFY_LOCAL_LISTENERS(<param data here>)]”. The data passed by the
NOTIFY_LOCAL_LISTENERS macro is set in the NOTIFY_LOCAL_LISTENERS params field.

By default the NOTIFY_LOCAL_LISTENERS params field will be filled in with the value:

GetSubjectField, <LAB_ORDER_ID>, [SUBJECT_INFO_TABLE_NAME], [SUBJECT_ID],
[FIELD_NAME]

This params string is itself evaluated at the time the order data is created.

The first parameter is the event that is broadcast, in this case a GetSubjectField event. The
subsequent parameters are passed as the data for that event.

The first data field passed, in this case, is “<LAB_ORDER_ID>” which does not get changed to
anything as the string “<LAB_ORDER_ID>” , unless it is passed as a parameter to another
macro, is not a macro so it’s treated as a literal string and evaluates to “<LAB_ORDER_ID>”.

The remaining parameters take advantage of three additional macros that get created at the
time the params string is evaluated:

SUBJECT_INFO_TABLE_NAME - The SubjectInfo table name called for in the dp2 macro.
SUBJECT_ID - The subject ID of the subject called for in the dp2 macro.

FIELD_NAME - The field name from the table called for in the dp2 macro.

Page �4 rev: 3.1.0fc53

ROES dp2 Order Importer Listener Agent

So let’s say, for example, we had a text field where the dp2 macro called for retrieving the
FirstName field from the SubjectInfoSports table where the SubjectID was 0001. The evaluated
params string would look like:

GetSubjectField, <LAB_ORDER_ID>, SubjectInfoSports, 0001, FirstName

So the resulting text value for the field would be:

[NOTIFY_LOCAL_LISTENERS(GetSubjectField, <LAB_ORDER_ID>, SubjectInfoSports, 0001,
FirstName)]

When that product is rendered in the ROES Server it will broadcast that event and look for a
response from an event handler that is listening for “GetSubjectField”. That response will be
swapped into the text for that node and will be rendered.

2.4. Path conversion Functions
Down near the bottom of the dp2 Agent are two fields marked “DP2 to Local Path Function” and
“Local to DP2 Path Function”.

These function make it possible for you to morph a path that is defined relative to one system
into a path that resolves to the same file but relative to the other system.

When would this ever be useful? If you are running both the ROES Server and dp2 in windows
then you probably wont ever need to do anything here; unless maybe you were using mounted
directories and the disk were not mounted with the same ID on both systems. If you are running
your ROES Server on Mac OS X and dp2 on Windows then the dp2 Agent will need to be able
to transform paths from one system into paths on the other.

By default, the “DP2 to Local Path Function” just contains the macro [DP2_PATH] which
evaluates to the path, relative to dp2, that you will want to change into a local, that is, ROES
Server relative path. Below is an example of how I do this in my test environment.

[BEGIN_SCRIPT(BeanShell)]
 import com.softworks.server.scripting.*;
 import java.util.*;
 import com.softworks.server.proxy.*;

 // Defined by the environment for us
 // Hashtable gReportMacros;
 // Hashtable gSystemData;
 // StringWriter gOutputWriter;

Page �5 rev: 3.1.0fc53

ROES dp2 Order Importer Listener Agent

 // Convert Windows path to OS X path
 String thePath = (String) gReportMacros.get("DP2_PATH");

 if (thePath.toUpperCase().
 startsWith("\\\\Macbookpc\\KPDP2\\".toUpperCase()))
 {
 thePath =
 thePath.substring("\\\\Macbookpc\\KPDP2\\".length());
 thePath =
 "/Volumes/C/Eastman Kodak/KPro Applications/KPDP2/" +
 thePath.replace('\\', '/');
 }
 else if (thePath.toUpperCase().startsWith("C:\\".toUpperCase()))
 {
 thePath = thePath.substring("C:\\".length());
 thePath = "/Volumes/C/" + thePath.replace('\\', '/');
 }

 gReportMacros.put("THE_PATH", thePath);
[END_SCRIPT][\]
[THE_PATH]

Basically the script is looking for either a preceding “\\Macbookpc\KPDP2\” or “C:\\” which are
the two ways that a path might be defined in my dp2 environment, and replacing those with “/
Volumes/C/Eastman Kodak/KPro Applications/KPDP2/“ or “/Volumes/C/“ respectively and then
swapping any remaining backslashes with forward slashes.

Similarly, the “Local to DP2 Path Function” is populated by default with just the macro
[LOCAL_PATH] which will evaluate to the path to be modified as it’s defined relative to the
ROES Server environment. Below is an example of how I change the path on my test system.

[BEGIN_SCRIPT(BeanShell)]
 import com.softworks.server.scripting.*;
 import java.util.*;
 import com.softworks.server.proxy.*;

 // Defined by the environment for us
 // Hashtable gReportMacros;
 // Hashtable gSystemData;
 // StringWriter gOutputWriter;

 // Convert OS X path to Windows path
 String thePath = (String) gReportMacros.get("LOCAL_PATH");

 if (thePath.toUpperCase().startsWith("/Volumes/C/Eastman Kodak/
KPro Applications/KPDP2/".toUpperCase()))
 {
 thePath =

Page �6 rev: 3.1.0fc53

ROES dp2 Order Importer Listener Agent

 thePath.substring(
 "/Volumes/C/Eastman Kodak/KPro Applications/KPDP2/".length());
 thePath =
 "\\\\Macbookpc\\KPDP2\\" + thePath.replace('/', '\\');
 }
 else if (thePath.toUpperCase().
 startsWith("/Volumes/C/".toUpperCase()))
 {
 thePath = thePath.substring("/Volumes/C/".length());
 thePath = "C:\\" + thePath.replace('/', '\\');
 }

 gReportMacros.put("THE_PATH", thePath);
[END_SCRIPT][\]
[THE_PATH]

This script basically does the same thing as the prior script stripping the Mac OS X prefix and
replacing it with the windows equivalent.

If you wan tot learn more about scripting then you should take a look at our scripting guide
“Scripting for the ROES Server”.

3. Related Topics

3.1. Getting to know the NOTIFY_LOCAL_LISTENERS report
macro

The NOTIFY_LOCAL_LISTENERS report macro allows you to broadcast an event to listeners
on this workstation and by means of a convention, pass data to and receive results back from
the event listener.

The NOTIFY_LOCAL_LISTENERS report macro that can be called like so:

[NOTIFY_LOCAL_LISTENERS(HelloFromReport, MyFirstParam, MySecondParam)]

The first parameter to the macro is the event that will be broadcast, "HelloFromReport" in this
example and the following comma separated parameters will be passed to the caller in the
eventData with keys that are equal to their parameter position. So in the above example the
two params would appear in the event data with the keys "1" set to " MyFirstParam" and "2"
set to " MySecondParam".

By convention, listeners that handle events broadcast from the NOTIFY_LOCAL_LISTENERS
report macro, can return data to the caller which will be used as the evaluated value for the
macro by adding a key "result" to the eventData and setting it to the value to be returned. The
event listener must not be run on a separate thread or it will not be able to return its result. If
an exception occurs in the handler you can return that to the notifier by adding an "Exception"
key to the eventData and setting it to the Exception object thrown. For example:

Page �7 rev: 3.1.0fc53

ROES dp2 Order Importer Listener Agent

//--
import com.softworks.server.scripting.*;

Hashtable eventData = gReportMacros.get("EventData");

// Get the first param
String p1 = eventData.get("1");
String p2 = eventData.get("2");

try
{
 eventData.put("result", "Hello to you too, the first param
passed was:" + p1 + " and the second param passed was:" + p2);
}
catch (Exception e)
{
 eventData.put("Exception", e);
}
//--

3.2. Implementing a Custom Script Listener to handle
GetSubjectField

Now you will want to add a CustomListener Agent to deal with the GetSubjectField events.
Again go to the Listeners Tab and select the Plus button in the lower left corner and this time
select “Add CustomListener Agent”. Name the listener as you like and set the “Listen for
events named” field to “GetSubjectField”. Make sure the “Run in separate thread” option is
not selected and select BeanShell as the script language.

Let’s say that we have the order’s subject data in tables matching the dp2 SubjectInfo tables
(perhaps we used the OVERRIDE_HANDLE_SUBJECT_TABLE…not familiar with that? See the
section below titled Importing Subject Data in ROES Server)

 and then enter something like the script below.

//--
// Called with [NOTIFY_LOCAL_LISTENERS(GetSubjectField,
// <LAB_ORDER_ID>,
// [SUBJECT_INFO_TABLE_NAME],
// [SUBJECT_ID],
// [FIELD_NAME])]
import com.softworks.server.scripting.*;
import java.util.*;
import java.sql.*;

String eventName = (String) gReportMacros.get("EventName");
Hashtable eventData = (Hashtable) gReportMacros.get("EventData");

Page �8 rev: 3.1.0fc53

ROES dp2 Order Importer Listener Agent

// Get the parameter values that were passed
String orderID = eventData.get("1");
String tableName = eventData.get("2");
String subjectID = eventData.get("3");
String fieldName = eventData.get("4");

try
{
 result = "";
 Connection dbConnection = DriverManager.getConnection(
 gSystemData.get("DATABASE_URL"),
 gSystemData.get("DATABASE_UN"),
 gSystemData.get("DATABASE_PW"));

 Statement aStatement = dbConnection.createStatement();
 String query = "Select " + fieldName + " from " + tableName +
 " where OrderID='" + orderID +
 "' and SubjectID='" + subjectID + "'";
 gOutputWriter.write("Executing query:" + query);
 ResultSet rs = aStatement.executeQuery(query);
 if (rs.next())
 result = rs.getString(1);
 rs.close();
 aStatement.close();
 dbConnection.close();

 gOutputWriter.write("Returning result:" + result);
 eventData.put("result", result);
}
catch (Exception err)
{
 // OK, let's put the exception back in the eventData
 // to let the caller know we encountered an exception
 eventData.put("Exception", err);
}
//--

3.3. Importing Subject Data in ROES Server
You can easily import subject data from a ROES order into tables that you have defined in the
ROES Server database by adding a CustomListener Script for
OVERRIDE_HANDLE_SUBJECT_TABLE events.

When an order containing subject data is processed by the ROES Server an
OVERRIDE_HANDLE_SUBJECT_TABLE event will be broadcast for each table in the subject
data within that order. The event passes a reference to the recordsfile element from the order
data which the script can use to import that data into a table; e.g

Page �9 rev: 3.1.0fc53

ROES dp2 Order Importer Listener Agent

//---
// OVERRIDE_HANDLE_SUBJECT_TABLE script
import com.softworks.server.scripting.*;

Hashtable eventData = gReportMacros.get("EventData");
RSXMLElement recordsfileData = eventData.get("recordsfile");

// Get the tables
ArrayList<RSXMLElement> tables = recordsfileData.getChildren(
 "recordstable");

for (RSXMLElement aTable : tables)
{
 String tableName = aTable.getAttribute(“fromtable”,
 aTable.getAttribute(“tablelabel”);
 if (tableName != null)
 RSScriptUtilities.populateTableWithRecordsTableData(
 tableName.toUpperCase(), aTable);
}
//---

In the script above we are looking for the name of the table. If this order was imported from
dp2 using the dp2 Order Importer Listener Agent then the name of the dp2 Subject Info table
that the data came from will be assigned to an attribute of the table element called “fromtable”.
If the order was created using the ROES Client Events module then the table that the lab has
associated with that table will be assigned to an attribute of the table element called
“tablelabel”. If neither of those attributes have been defined on the table element then the
script will have to be modified to determine what table the data should be added to.

Page �10 rev: 3.1.0fc53

